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Integer programming, the problem of finding an optimal integer solution satisfying linear 
constraints, is one of the most fundamental problems in discrete optimization. In the first 
part of this talk, I will discuss the important open problem of whether there exists a single 
exponential time algorithm for solving a general n variable integer program, where the best 
current algorithm requires n^{O(n)} time. I will use this to motivate a beautiful conjecture 
of Kannan & Lovasz (KL) regarding how ""flat"" convex bodies not containing integer 
points must be. 
 
The l_2 case of KL was recently resolved in breakthrough work by Regev & Davidowitz `17, 
who proved a more general ""Reverse Minkowski"" theorem which gives an effective way 
of bounding lattice point counts inside any ball around the origin as a function of sublattice 
determinants. In both cases, they prove the existence of certain ""witness"" lattice 
subspaces in a non-constructive way that explain geometric parameters of the lattice. In 
this work, as my first result, I show how to make these results constructive in 2^{O(n)} 
time, i.e. which can actually find these witness subspaces, using discrete Gaussian sampling 
techniques. As a second main result, I show an improved complexity characterization for 
approximating the covering radius of a lattice, i.e. the farthest distance of any point in space 
to the lattice. In particular, assuming the slicing conjecture, I show that this problem is in 
coNP for constant approximation factor, which improves on the corresponding 
O(log^{3/2} n) approximation factor given by Regev & Davidowitz's proof of the l_2 KL 
conjecture. 
 


